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1 Introduction

In the past year the GAIA team has improved our
end-to-end knowledge extraction, grounding, in-
ference, clustering and hypothesis generation sys-
tem that covers all languages (English, Russian
and Ukrainian), data modalities and knowledge el-
ement types defined in new AIDA ontologies. We
participated in the evaluations of all tasks within
TA1, TA2 and TA3 and achieved highly compet-
itive performance. Our TA1 system achieves top
performance at both intrinsic evaluation and ex-
trinsic evaluation through TA2 and TA3. The sys-
tem incorporates a number of impactful and fresh
research innovations:

• Attentive Fine-Grained Entity Typing
Model with Latent Type Representation:
We propose a fine-grained entity typing
model with a novel attention mechanism and
a hybrid type classifier. We advance exist-
ing methods in two aspects: feature extrac-
tion and type prediction. To capture richer
contextual information, we adopt contextu-
alized word representations instead of fixed
word embeddings used in previous work. In
addition, we propose a two-step mention-
aware attention mechanism to enable the
model to focus on important words in men-
tions and contexts. We also develop a hy-
brid classification method beyond binary rel-
evance to exploit type interdependency with

latent type representation. Instead of inde-
pendently predicting each type, we predict
a low-dimensional vector that encodes latent
type features and reconstruct the type vector
from this latent representation.

• Cross-media Structured Common Seman-
tic Space for Multimedia Event Extrac-
tion: We propose and develop a new multi-
media Event Extraction (M2E2) task that in-
volves jointly extracting events and argu-
ments from text and image. We propose a
weakly supervised framework which learns
to encode structures extracted from text and
images into a common semantic embedding
space. This structured common space en-
ables us to share and transfer resources across
data modalities for event extraction and argu-
ment role labeling.

• Cross-lingual structure transfer for re-
lation and event extraction: We investi-
gate the suitability of cross-lingual structure
transfer techniques for these tasks. We ex-
ploit relation- and event-relevant language-
universal features, leveraging both symbolic
(including part-of-speech and dependency
path) and distributional (including type repre-
sentation and contextualized representation)
information. By representing all entity men-
tions, event triggers, and contexts into this
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Figure 1: The Architecture of GAIA Text Knowledge Extraction

complex and structured multilingual com-
mon space, using graph convolutional net-
works, we can train a relation or event ex-
tractor from source language annotations and
apply it to the target language.

2 TA1 Text Knowledge Extraction

2.1 Approach Overview
We build an end-to-end knowledge extraction,
grounding, inference, clustering and hypothesis
generation system that covers all languages, data
modalities. It supports the extraction of 187 en-
tity types, 49 relation types, and 139 event types
defined in AIDA ontology. Figure1 shows the
overview framework.

The details of each component will be presented
in the following sections.

2.2 Mention Extraction
2.2.1 Coarse-grained Named Mention

Extraction
We developed a neural model for name mention
extraction. The basic model consists of an em-
bedding layer, a character-level network, a bidi-
rectional long-short term memory (LSTM) layer, a
linear layer, and a conditional random fields (CRF)
layer. In this architecture, each sentence is repre-
sented as a sequence of vectors X = {x1, ...,xL},
where xi represents features of the i-th word. We
use two types of features in our model: 1. Word

embedding that encodes the semantic information
of words. 2. Character-level representation that
captures subword information.

The LSTM layer then processes the sentence in
a sequential manner and encodes both contextual
and non-contextual features of each word xi into
a hidden state hi. After that, we decode the hid-
den state into a score vector yi with a linear layer.
The value of each component of yi represents the
predicted score of a label. However, as the label
of each token is predicted separately, the model
may produce a path of inconsistent tags such as
[BEGIN-GPE, INSIDE-GPE, SINGLETON-GPE].
Therefore, we add a CRF layer on top of the model
to capture tag dependencies and predict a global
optimal tag path for each sentence. Given a sen-
tence X and scores predicted by the linear layer
Y = {y1, ...,yL}, the score of a sequence of tags
is computed as:

s(X, ẑ) =

L+1∑
i=1

Aẑi−1,ẑ +

L∑
i=1

yi,ẑi ,

where each entry Aẑi−1,ẑi is the score of jumping
from tag ẑi−1 to tag ẑi, and yi,ẑi is the ẑi dimension
of yi that corresponds to tag ẑi. We append two
special tags <start> (ẑ0) and <end> (ẑL+1) to
denote the beginning or end of a sentence. Finally,
we maximize the sentence-level log-likelihood of



the gold tag path z given the input sentence by

log p(z|X) = log
( es(X,z)∑

ẑ∈Z e
s(X,ẑ)

)
= s(X, z)− log

∑
ẑ∈Z

es(X,ẑ),

where Z denotes the set of all possible paths.
For English, we improve the model by incorpo-

rating ELMo contextualized word representations.
We use a pre-trained ELMo encoder to generate
the contextualized word embedding ci for each to-
ken and concatenate it with hi.

We train separate models for name, nominal,
and pronominal mentions and merge their outputs
into the final mention extraction result.

We also explore a reliability-aware dynamic
feature composition mechanism (Lin et al., 2019)
to obtain better representations for rare and unseen
words. We design a set of frequency-based relia-
bility signals to indicate the quality of each word
embedding. These signals control mixing gates at
different levels in the model. For example, if a
word is rare, the model will rely less on its pre-
trained word embedding, which is usually not well
trained, but assign higher weights to its character
and contextual features.

2.2.2 Fine-grained Mention Extraction
We develop an attentive classification model that
takes a mention with its context sentence and pre-
dicts the most possible fine-grained type. Unlike
previous neural models that generally use fixed
word embeddings and task-specific networks to
encode the sentence, we employ contextualized
word representations (Peters et al., 2018) that can
capture word semantics in different contexts.

After that, we use a novel two-step attention
mechanism to extract crucial information from the
mention and its context as follows

m =

i∑
M

ami ri,

c =
i∑
C

aciri,

where ri ∈ Rdr is the vector of the i-th word, dr
is the dimension of r, and attention scores ami and
aci are calculated as

ami = Softmax(vm> tanh (Wmri)),

aci = Softmax(vc> tanh (W c(ri)⊕m⊕ pi)),

pi =

(
1− µ

(
min(|i− a|, |i− b|)− 1

))+

,

where parameters Wm ∈ Rda×dr , vm ∈ Rda ,
W c ∈ Rda×(2dr+1), and vc ∈ Rda are learned
during training, a and b are indices of the first and
last words of the mention, da is set to dr, and µ is
set to 0.1.

Next, we adopt a hybrid type classification
model consisting of two classifiers. We first learn
a matrix W b ∈ Rdt×2dr to predict type scores by

ỹb = W b(m⊕ c),

where ỹbi is the score for the i-th type.
We also learn to predict the latent type represen-

tation from the feature vector using

l = V l(m⊕ c),

where V l ∈ R2dr×dl . We then recover a type vec-
tor from this latent representation using

ỹ = UΣl,

where U and Σ are obtained via Singular Value
Decomposition (SVD) as

Y ≈ Ỹ = UΣL>,

where U ∈ Rdt×dl , Σ ∈ Rdl×dt , L ∈ RN×dt , and
dl � dt. Finally, we combine scores from both
classifier

ỹ = σ(W b(m⊕ c) + γW ll),

where γ is set to 0.1. The training objective is to
minimize the cross-entropy loss function as

J(θ) = − 1

N

N∑
i

yi log ỹi + (1− yi) log(1− ỹi).

Furthermore, we obtain the YAGO fine-
grained types by linking entities to the Freebase
(LDC2015E42), and map them to AIDA entity
types. Besides, for GPE and LOC entities, we
link them to GeoNames 1 and determine their
fine-grained types using GeoNames attributes fea-
ture class and feature code. Considering that
most nominal mentions can not be linked to Free-
base or GeoNames and the lack of training data,

1http://geonames.org/

http://geonames.org/


we develop a nominal keyword list for each type.
We compute a weighted score for these typing
results and normalize the scores as typing confi-
dence. Moreover, some entity types are related
to events (e.g., PER.Protester is usually a person
argument played as a protester role in a protest
event), and thus we label them based on event ex-
traction results.

2.2.3 Entity Filler Mention Extraction
We use Stanford CoreNLP (Manning et al., 2014)
to extract values and titles from English raw doc-
uments. We also utilize the time normalization
function included in the CoreNLP by adding the
date when the document was posted as the refer-
ence time. For time expressions in Russian and
Ukrainian, we use a deterministic rule-based sys-
tem based on SUTime (Finkel et al., 2005).

For color entity types, we simply assemble a
list of common colors in English, Russian, and
Ukrainian, and then perform string matching to tag
these entities.

2.2.4 Informative Justification Extraction
For each named entity, we rank all mentions in
terms of length and frequency. For each nominal
entity, we select the noun phrase chunk containing
the most frequent mentions. For pronoun entities,
we select the most frequent mention. The confi-
dence of informative justification is the weighted
sum of all mentions, with higher weights for name
mentions. If one entity only has nominal and pro-
noun mentions, we reduce its confidence so it will
be ranked after other entities with name mentions.

2.3 Entity Linking

Given a set of name mentions M =
{m1,m2, ...,mn}, we first generate an initial
list of candidate entities Em = {e1, e2, ..., en}
for each name mention m, and then rank them to
select the candidate entity with the highest score
as the appropriate entity for linking.

We adopt a dictionary-based candidate gener-
ation approach (Medelyan and Legg, 2008).For
Russian and Ukrainian, we use translation dictio-
naries collected from Wikipedia (Ji et al., 2009)
to translate each mention into English first. If a
mention has multiple translations, we merge the
linking results of all translations at the end. Then
we rank these entity candidates based on three
measures: salience, similarity and coherence (Pan
et al., 2015).

We utilize Wikipedia anchor links to compute
salience based on entity prior:

pprior(e) =
A∗,e
A∗,∗

(1)

where A∗,e is a set of anchor links that point to
entity e, and A∗,∗ is a set of all anchor links in
Wikipedia. We define mention to entity probabil-
ity as

pmention(e|m) =
Am,e
Am,∗

(2)

where Am,∗ is a set of anchor links with the same
anchor textm, andAm,e is a subset ofAm,∗ which
points to entity e.

Then we compute the similarity between men-
tion and any candidate entity. We first utilize entity
types of mentions which are extracted from name
tagging. For each entity e in the KB, we assign
a coarse-grained entity type t (PER, ORG, GPE,
LOC, Miscellaneous (MISC)) using a Maximum
Entropy based entity classifier (Pan et al., 2017).
We incorporate entity types by combining it with
mention to entity probability pmention(e|m) (Ling
et al., 2015):

ptype(e|m, t) =
p(e|m)∑

e 7→t
p(e|m)

(3)

where e 7→ t indicates that t is the entity type of e.
Following (Huang et al., 2017), we construct a

weighted undirected graph G = (E,D) from DB-
pedia, where E is a set of all entities in DBpedia
and dij ∈ D indicates that two entities ei and ej
share some DBpedia properties. The weight of dij ,
wij is computed as:

wij =
|pi ∩ pj |

max(|pi|, |pj |)
(4)

where pi, pj are the sets of DBpedia properties
of ei and ej respectively. After constructing the
knowledge graph, we apply the graph embedding
framework proposed by (Tang et al., 2015) to gen-
erate knowledge representations for all entities in
the KB. We compute cosine similarity between
the vector representations of two entities to model
coherence between these two entities coh(ei, ej).
Given a name mention m and its candidate entity
e, we defined coherence score as:

pcoh(e) =
1

|Cm|
∑
c∈Cm

coh(e, c) (5)



where Cm is the union of entities for coherent
mentions of m.

Finally, we combine these measures and com-
pute final score for each candidate entity e.

2.4 Within-document Coreference Resolution

For name mentions that cannot be linked to the
KB, we apply heuristic rules described in Table 1
to cluster them within each document.

Rule Description
Exact match Create initial clusters based on mention

surface form.
Normalization Normalize surface forms (e.g., remove

designators and stop words) and group
mentions with the same normalized sur-
face form.

NYSIIS (Taft,
1970)

Obtain soundex NYSIIS representation
of each mention and group mentions
with the same representation longer
than 4 letters.

Edit distance Cluster two mentions if the edit distance
between their normalized surface forms
is equal to or smaller than D, where
D = length(mention1)/8 + 1.

Translation Merge two clusters if they include men-
tions with the same translation.

Table 1: Heuristic Rules for NIL Clustering.

For each cluster, we assign the most frequent
name mention as the document-level canonical
mention.

2.4.1 English Coreference Resolution

We take in the output of both the entity linking
and NIL Clustering system to predict the corefer-
ence clusters. Our main architecture is based on
End-to-End Neural Coreference Resolution (Lee
et al., 2017). However, since we already know the
entity type of each mention, we further simplify
the coreference model by only computing scores
between mentions with the same entity type.

Given a document D = {y1, y2, ...yn}, we re-
ceive its mention spans S = {s1, s2, ..., sl} with
their mention types M = {m1,m2, ...,ml}, en-
tity types E = {e1, e2, ..., el}, and clusters C =
{c1, c2, ..., cl} from entity linking and NIL Clus-
tering components, where yi is an individual word,
n is the length of the document, m is the number
of mentions, ci ∈ {1, 2, ..., v}, v is the cluster size,
and each span si contains two indices START(i)
and END(i). To compute a word representation
at position k, we use a pre-trained ELMo (Peters
et al., 2018) embedding layer to obtain its repre-
sentation y∗k.

Then for each span i, we compute the soft atten-
tion(Bahdanau et al., 2014) over each word in the
span:

αk = ωα · FFNNα(y∗k) (6)

αi,k =
exp (αk)∑END(i)

k=START(i) exp (αk)
(7)

ŷi =

END(i)∑
k=START(i)

αi,k · y∗k (8)

where ŷi is a weighted sum of all word hidden
states in span i, and FFNN is the feed-forward
neural network. Then the representation gi of a
span i is computed as:

gi = [y∗START(i), y
∗
END(i), ŷi,Φg(i),Γg(i)] (9)

where a feature vector Φg(i) encodes the size of
span i, a feature vector Γg(i) encodes the entity
type of span i, and [, ] is the concatenated vector.

Finally, to compute clusters, for each span gi,
we check all precedent mentions gj where j < i
has the same entity type. For each pair of span gi
and gj , inspired by the dynamic feature composi-
tion (Lin et al., 2019), we introduce two dynamic
span gates to update each span respectively:

ĝi = σ(FFNNσ1([gi, gj ]])) ∗ gi (10)

ĝj = σ(FFNNσ2([gi, gj ]])) ∗ gj (11)

where σ is the sigmoid function. Then we can
compute the pairwise score x(i, j) as:

x(i, j) = [wx · ĝi, ĝj , ĝi ◦ ĝj ,Φx(i, j)] (12)

where ◦ is the element-wise similarity feature vec-
tor, and Φx(i, j) encodes the distance between two
span.

For each span si, following Lee et al. (2017),
we learn a conditional probability distribution for
the corresponding span si over all its antecedent
ai ∈ A(i) = {ε, 1, ..., i − 1} where ε is a dummy
antecedent:

P (s1, ..., sl|D) =

l∏
i=1

exp(x(i, ai)))∑
a′∈A(i) expx(i, a′)

(13)

Similarly, we then optimize the marginal log-
likelihood of all correct antecedents implied by
gold-standard clustering:

log
l∏

i=1

∑
a′∈A(i)(i)

P (a′) (14)



where GOLD(i) is the set of spans in the gold-
standard cluster containing span i. In the test
phrase, we only use the cluster prediction results
from the system generated span si whose original
cluster ci either only contains nominal mentions or
a single mention.

For English training, we used ACE2005,
EDL2016, EDL2017, CoNLL-2012 to train the
system.

2.4.2 Russian/Ukrainian Name Coreference
Resolution

For Russian and Ukrainian, we perform an addi-
tional name coreference step as post-processing.
We construct a graph by considering each exist-
ing AIF cluster as a node, and apply the following
rules to add edges between clusters if:

1. There is an exact match in the string or stem
between any name mentions in either cluster.

2. There exists two strings from two clus-
ters where the Levenshtein distance between
them is less than or equal to 2 and the size of
the string or stem is at least 6 or 5, respec-
tively.

3. There exists an appos2 relation between two
name mentions, with the same entity type.
We apply the UDPipe(Straka and Straková,
2017) models, which are pre-trained on the
Universal Dependencies(Nivre et al., 2019)
dataset, to extract the syntactic relations.

4. For person names, there exists a single-token
string in one cluster which appeares as the
second token of a two-token string in another
cluster and does not appear as the second to-
ken of any other two-token string (e.g. Smith
to John Smith unless Jane Smith also appears
in the document).

5. For person names, there exists a two-token
string in one cluster which matches a two-
token string in another cluster, accounting for
morphological inflection of both strings.

A coreference cluster is constructed from each
connected component of the resulting graph. For
Russian and Ukrainian stemming, stems are deter-
mined in a simple, heuristic way by stripping a list
of common Russian and Ukrainian inflectional af-
fixes from the end of the string.

2appositional modifier

2.5 Relation Extraction

For fine-grained relation extraction, we map
the AIDA subtypes to ACE/ERE ontology and
apply a Convolutional Neural Network (CNN)
based model to detect these mapped types, and
then utilize entity type constraints as well as
dependency patterns to re-categorize these de-
tected relations into fine-grained types (Sec-
tion 2.5.1). For types that cannot be mapped di-
rectly to ACE/ERE, such as Genafl.Sponsor or
Evaluate.Deliberateness, we design depen-
dency patterns and implement a rule-based system
to detect these fine-grained relations directly from
the text (Section 2.5.2).

2.5.1 ACE/ERE Relation Extraction and
Fine-grained Typing

The relation extraction system predicts relations
between each pair of entity mentions within the
same sentence. We employ a CNN with piece-
wise pooling as our underlying model.

Model Given a source sentence s =
[w1, ..., wm] along with entity mentions e1
and e2, for each word wi, we generate an em-
bedding vi = [wi,pi, p̃i, ti, t̃i, ci, ηi], where wi

denotes the word embedding of wi from a set of
pre-trained embeddings. pi and p̃i are position
embeddings indicating the relative distance from
wi to e1 and e2, respectively. ti and t̃i are, respec-
tively, the entity type embeddings of e1 and e2.
Finally, ci is the chunking embedding, and ηi is a
binary digit indicating whether the word is within
the shortest dependency path between e1 and
e2. All embeddings besides the pre-trained word
embedding are randomly initialized and optimized
during training. The result of this embedding
process is a sequence of word representations
V = {v1, . . . ,vn}. We then apply a convolution
filter, W , with an added bias, b, to each sliding
n-gram phrase, gj (i.e., gj = tanh(W · V ) + b).
Since different segments of a sentence do not hold
equal weight towards the underlying semantics of
the sentence, we split all the gj into three parts
based on the two entity mentions and perform
piecewise max pooling. Lastly, we concatenate
the representations of these three segments, feed
them into a fully connected layer, and apply
a linear projection and softmax to classify the
relations.



Training Details For English training, we man-
ually map DEFT Rich ERE and ACE2005 to the
AIDA ontology, and combine all the resources.
For Ukrainian and Russian, we asked a native
speaker to annotate some part of the seedling cor-
pus. To further improve the system performance,
we also adopted a majority vote strategy to assem-
ble the models for all three languages. Addition-
ally, we find that our model cannot well capture
global information due to instance-level training.
Accordingly, we extract some high-confidence,
frequent relation patterns (Table 2) from the train-
ing data and treat them as hard constraints to tackle
this problem.

Relation type Relation pattern

Employment Person of Organization
Organization origin Organization in Geography

Leadership Geography prime Person
located near Person at Facility
Part whole Organization of the Organization

Manufacture Geography Weapon

Table 2: Examples of frequent relation patterns.

Fine-grained Typing We take the relations ex-
tracted from the above component as input to a
rule-based component that assigns fine-grained re-
lation types, if possible. This component only
matches high confidence patterns and largely re-
lies on entity type constraints. For example, if a
Leadership relation type is detected between a
PER mention and an ORG mention, and the ORG

mention is a law enforcement agency or military
organization, then we assign a fine-grained type of
Leadership.MilitaryPolice.

In conjunction with entity type constraints,
we also employ dependency patterns to ensure
the correctness. For instance, if two entities
fit the argument constraints for LocatedNear

and the location is an object of a “surround”
keyword, then we assign the fine-grained type
LocatedNear.Surround. We base these patterns
on observations from training data across English,
Ukrainian, and Russian.

2.5.2 Unmapped Relation Types
We implement a rule-based re-
lation extraction component for
Evaluate.Deliberateness/Legitimacy,
Measurement.Size, Genafl.Orgweb, and
Information.Make/Color based on the rules as
follows (for English only):

Evaluate.Deliberateness/Legitimacy We
extract this relation in a similar fashion to the
fine-grained typing. We first utilize argument
type constraints, such as the event having a
StartPosition type. Then, we employ key-
words and dependency patterns to determine who
is the holder of the evaluation.
Measurement.Size We first apply Stanford
CoreNLP to extract all NUMBER N . Then for
ni ∈ N , we check if the word appears after ni.
If it is a part of a name mention extracted by our
EDL system, we tag the relation between them as
Measurement.Count. We then attempt to assign
a fine-grained type to these relations based upon
whether or not there are units mentioned in the
sentence.
Genafl.Orgweb Our EDL system can detect urls
as ORG and cluster them with other name mentions.
We tag those urls as Genafl.Orgweb of the ORG

named entities.
Information.Make/Color Any entities that are
detected that fit the argument constraints for
these types and satisfy the dependency pat-
tern criteria are assigned one of these types.
Only entities of type Color may be assigned
Information.Color.

2.5.3 Sponsorship and AssignBlame Relation
Extraction

We implement a rule-based component for
GeneralAffiliation.Sponsorhip and
ResponsibilityBlame.AssignBlame using
manually collected trigger words in English and
Russian. A seed set of trigger words is collected
from the training data and then augmented to
include synonyms and related words. We used
a native Russian speaker to augment the set of
Russian trigger words. Each trigger is associated
with a fine-grained type and accompanied by a
confidence score that accounts for whether we
have seen the trigger, a translation of the trigger,
or a synonym of the trigger in a relation.

For English, we extract relations by finding the
shortest dependency path (SDP) between two en-
tity mentions and checking for trigger words along
this path. If any triggers occur in the SDP, we ex-
tract the relation associated with the trigger word
between the two entity mentions. For Russian, we
look at the plain text between the two entity men-
tions, instead of the SDP, and for Ukrainian we
first translate to Russian and then follow the same
procedure as for Russian.



2.5.4 Sentiment Relation Extraction

We train a targeted-sentiment system (Zhong
et al., 2019) for the Evaluate.Sentiment rela-
tion. The system is developed for English and then
adapted to Russian and Ukrainian.

The English system features a technique for
training attention to focus on human rationales and
can distinguish between pairs of entities that have
sentiment relations and pairs that do not. We de-
fine human ground-truth attention as uniform over
words in a rationale, selecting rationales from the
MPQA dataset (Wilson, 2008). The model’s at-
tention is then made to match the human attention
through a new KL-divergence loss component,
giving significant improvements and outperform-
ing a wide range of competitive baselines (Zhong
et al., 2019).

We adapt the English sentiment system to
Russian and Ukrainian by training the model
using pre-trained multi-lingual English-Russian-
Ukrainian word embeddings (Conneau et al.,
2017) as input features. Since the English senti-
ment system uses positional embeddings derived
from the POS, we also use Russian POS tags
(Kopotev and Ianda, 2006). Due to the linguis-
tic similarities between Ukrainian and Russian,
we assume a one-to-one relationship between a
Ukrainian sentence and its Russian translation and
use this to project Russian POS tags to Ukrainian
for the sentiment system. In this way, we only
need labeled training instances for English in or-
der to train a system for all three languages. The
model achieves comparable F1-score to the origi-
nal system (Zhong et al., 2019) trained using pre-
trained English only word embeddings (Penning-
ton et al., 2014).

2.6 Event Extraction

Event extraction consists of two subtasks: trig-
ger labeling identifies the trigger words of
events and determines the event types, e.g.,
Conflict.Attack; argument role labeling as-
signs the relation between entities (or argu-
ments) and triggers, e.g., an Attacker in a
Conflict.Attack event.

In this section, we will introduce our English
event extractor in Section 2.6.1 and Section 2.6.2,
and then we will present our approach in Russian
and Ukrainian event extractor in Section 2.6.3, fol-
lowed by fine-grained typing methods in 2.6.4.

2.6.1 Event Extraction with Generative
Adversarial Imitation Learning

Trigger labeling The trigger labeling module
still follows the sequence labeling model, which
includes a Bi-LSTM model and a CRF de-
coder (Feng et al., 2018). This is different from
the previous work (Zhang et al., 2018), which uti-
lizes the Q-learning algorithm from (Zhang et al.,
2019). We notice that under the definition of
AIDA schema, some triggers are phrases (more
than one word), and we find that the performance
with the Bi-LSTM-CRF model for such phrases is
better and more stable.

The input of the Bi-LSTM framework is word
embedding concatenated with the following cate-
gories.
• Token surface embeddings: We initialize a ran-

dom embedding dictionary for each token, this
embedding will be updated with the in the train-
ing phase.
• Character-based embeddings: Similar to the to-

ken surface embeddings, each character has an
randomly initialized embedding. We feed the
embeddings into a token-level Bi-LSTM net-
work and concatenate the final hidden represen-
tations from both directions for the token. These
embeddings are also updated during the training
phase.
• POS embeddings: We apply Part-of-Speech

tagging (POS) on the sentences with spaCy.
Similarly, the each POS label has a trainable
embeddings which is intialized with random
variables.
• Pre-trained embeddings: We also utilize the pre-

trained Word2Vec embeddings from Wikipedia
article dump (a version on January 1st, 2017).
These embeddings are fixed and not updated in
the training phase.

Argument role labeling Traditionally, argu-
ment role labeling is considered as classification
problem. In this work, we model it in a Reinforce-
ment Learning scenario, and consider a label as an
action from an agent (the model/extractor).

In this scenario, we define a state (feature)

str,ar =< vtr,var, atr, aar,fss >, (15)

where vs are the context embedding from the Bi-
LSTM network, tr denotes triggers, ar denotes
the argument candidate (typically, detected enti-
ties from Section 2.2), as are the actions (labels)



of event types (with tr footnote) and entity type
(with ar footnote), and fss denote a sub-sentence
embedding which consists of output of three Bi-
LSTM networks that consume the left, middle and
right subsentences seperated by the trigger and ar-
gument candidate.

We feed the state representation into an MLP to
obtain the probability distributionQtr,ar of actions
and we determine the argument role atr,ar with

âtr,ar = arg max
atr,ar

Qtr,ar(str,ar, atr,ar). (16)

We also assign a reward R for the action (argu-
ment role) and we train the models by minimizing

Lpg = −R logP (atr,ar|str,ar). (17)

The footnote pg denotes the RL algorithm
called policy gradient, which focus on optimizing
the actions on the probability distribution.

Dynamic Reward Estimation with GAN From
Equation 17 we notice that, if we impose a fixed
reward R, there is no difference between a classi-
fication model with cross-entropy loss and an RL
model. Hence, we introduce a reward estimator
based on GAN to issue dynamic rewards with re-
gard to the labels committed by the event extractor.
If the extractor repeatedly make mistakes on an in-
stance, then the extractor will increase harshness
on penalty, and the reward will also increase as the
target instance is considered a difficulty one. The
expanded difference between rewards and penal-
ties deviate the extractor from wrong actions (la-
bels) and push them to correct ones.

We train the reward estimator based on the com-
bination of the feature vector str,ar from Equa-
tion 15 and action embedding representation for
atr,ar. The reward estimator is the discriminator
in GAN, and will distinguish the input is from a
groudtruth instance (or in GAN, the real one, or
expert one) or from an extractor (or the generated
ones).

The output of the discriminator is between
(0, 1) range and we use a linear transform to ex-
pand it as (−5, 5). Then we use this output as the
reward R to optimize the extractor, or generator in
the GAN scenario.

Training Details Taking “out of vocabulary”
(OOV) problem into consideration, we intention-
ally set “UNK” (unknown) entry in the look-
up dictionaries of token surface embeddings,

character-based embeddings and POS embed-
dings. During training, we randomly mask known
tokens, POS tags and characters in the training
sentences with “UNK” mask, moreover, we also
set an all-0 vector of randomly selected tokens in
the pre-trained embeddings.

To improve performance, we expand the train-
ing dataset. The set includes documents from
ACE and ERE data set. To bridge the gap
among ACE, ERE and AIDA ontology, we clean
up the dataset. We map the labels in ACE
(e.g., Phone-Write, Transport) to ERE ones
(correspond, transport-art). We also remove
sentences with no trigger annotations from ACE
data to ensure that ERE labels that have no coun-
terparts in ACE (e.g., broadcast) will not be
missed due to empty annotation. Finally, we map
all ERE label to AIDA ones.

2.6.2 Event Extraction with Bi-LSTM
Trigger Labeling We develop a language-
independent neural network architecture: Bi-
LSTM-CRFs, which can significantly capture
meaningful sequential information and jointly
model nugget type decisions for event nugget
detection. This architecture is similar as the
one in (Yu et al., 2016; Feng et al., 2016; Al-
Badrashiny et al., 2017).

Given a sentence X = (X1, X2, ..., Xn) and
their corresponding tags Y = (Y1, Y2, ..., Yn), n
is the number of units contained in the sequence,
we initialize each word with a vector by look-
ing up word embeddings. Specifically, we use
the Skip-Gram model to pre-train the word em-
beddings (Mikolov et al., 2013). Then, the se-
quence of words in each sentence is taken as input
to the Bi-LSTM to obtain meaningful and contex-
tual features. We feed these features into CRFs
and maximize the log-probabilities of all tag pre-
dictions of the sequence.

Argument Labeling For event argument extrac-
tion, given a sentence, we first adopt the event
trigger detection system to identify candidate trig-
gers and utilize the EDL system to recognize all
candidate arguments, including Person, Location,
Organization, Geo-Political Entity, Time expres-
sion and Money Phrases. For each trigger and
each candidate argument, we select two types
of sequence information: the surface context be-
tween trigger word and candidate argument or the
shortest dependency path, which is obtained with



the Breath-First-Search (BFS) algorithm over the
whole dependency parsing output, as input to our
neural architecture.

Each word in the sequence is assigned with a
feature vector, which is concatenated from vec-
tors of word embedding, position and POS tag.
In order to better capture the relatedness between
words, we also adopt CNNs to generate a vector
for each word based on its character sequence. For
each dependency relation, we randomly initialize a
vector, which holds the same dimensionality with
each word.

We encode the following two types of sequence
of vectors with CNNs and Bi-LSTMs respectively.
For the surface context based sequence, we utilize
a general CNNs architecture with Max-Pooling to
obtain a vector representation. For the dependency
path based sequence, we adopt the Bi-LSTMs with
Max-Pooling to get an overall vector representa-
tion. Finally we concatenate these two vectors and
feed them into two softmax functions: one is to
predict whether the current entity mention is a can-
didate argument of the trigger, and the other is to
predict final argument role.

Training Details For all the above components,
we utilize all the available event annotations from
DEFT Rich ERE and ACE2005 for training.

2.6.3 Russian and Ukrainian Event
Extraction

Event Extraction for Russian and Ukrainian text
also follows two steps, as in (Zhang et al., 2018)
and the English counter parts in Section 2.6.1 and
2.6.2. First, we apply a Bi-LSTM over the pre-
trained word embeddings for each word in a sen-
tence to generate the hidden representation denot-
ing context. These vectors are then fed into a Soft-
max classifier, where each word is classified as ei-
ther a trigger of a particular AIDA event type, or
not.

In the second stage, we employ a CNN with
Softmax classification similar to (Kim, 2014), to
identify and label entities that play a role in each
event mention. Here, all entities within the same
sentence of an event mention are taken as candi-
date arguments. For each candidate argument, the
portion of the sentence between the argument and
its trigger word is used as input to the CNN. Sim-
ilar to step one, we use pre-trained embeddings to
represent each word. We use masks of length 3, 4,
and 5 in the convolution layer. Then, after max-

pooling, a fully connected layer generates a single
vector which is classified using a Softmax classi-
fier as a certain argument type, or not an argument.
We use post processing rules to ensure that all re-
sults follow the constraints set by the AIDA ontol-
ogy.

We also explore a structured transfer learning
approach (Subburathinam et al.) using graph con-
volutional networks. It represents all entity men-
tions, event triggers, and contexts into a com-
plex and structured multilingual common space,
and we train a relation and event extractor from
English language annotations and apply it to the
Russian and Ukrainian language. In this process,
we exploit event-relevant language-universal fea-
tures, leveraging both symbolic (including part-
of-speech and dependency path) and distributional
(including type representation and contextualized
representation) information.

2.6.4 Fine-grained Event Typing
For events that coarse types are not covered in the
English training data, we map FrameNet frames
to AIDA event types (Table 3). We tag frame ele-
ments as event arguments only if they overlap with
the named entities. For Russian and Ukrainian, we
use GIZA (Och, 1999; Och and Ney, 2003) to get
the word alignment.

For Government.Spy.Spy,
Government.Vote, Government.Agreements,
Disaster. AccidentCrash.AccidentCrash,
and which cannot be mapped from Framenet, we
implement a dependency-based system. We detect
event triggers based on fuzzy string match with
keywords 3. We further decide event arguments
based on the syntactic relation between the entity
end the verb keyword in the dependency tree.

We develop a rule-based fine-grained event typ-
ing system, including verb-based rules, context-
based rules, and argument-based rules. For
each coarse-grained types, we collect a verb
keywords list to distinguish its fine-grained
types. For example, Conflict.Attack is
Conflict.Attack.FirearmAttack when the
trigger is shooting. Contextual keywords are col-
lected similarly. For example, funeral in the
context of Contact.Meet can be used to de-
termine Contact.FuneralVigil.Meet. Mul-

3Government.Spy.Spy: spy;
Government.Vote: vote, ballot, poll, referendum, election;
Disaster.AccidentCrash.AccidentCrash: crash;
Government.Agreements: agreement



Framenet event type AIDA event type

Conquering Transaction.Transaction.TransferControl
Criminal investigation Justice.Investigate.InvestigateCrime

Sign agreement Government.Agreements.AcceptAgreementContractCeasefire
Inspecting Inspection
Destroying ArtifactExistence.DamageDestroy.Destroy
Damaging ArtifactExistence.DamageDestroy.Damage

Quitting a place Conflict.Yield.Retreat
Surrendering Conflict.Yield.Surrender

Explosion Disaster.FireExplosion.FireExplosion
Fire burning Disaster.FireExplosion.FireExplosion
Catching fire Disaster.FireExplosion.FireExplosion

Amalgamation Government.Formation.MergeGPE
Intentionally create Government.Formation.StartGPE

Come together Contact.Discussion
Discussion Contact.Discussion
Rescuing Movement.TransportPerson.EvacuationRescue

Prevarication Contact.Prevarication
Request Contact.CommandOrder

Speak on topic Contact.MediaStatement
Giving in Conflict.Yield

Table 3: Mapping from Framenet to AIDA event ontology.

tiple rules might be applied in order to de-
termine one fine-grained type. Also, the ar-
guments can be used to determine the fine-
grained types. For example, if there is an in-
strument for Life.Die Event, then it should
be Life.Die.DeathCausedByViolentEvents,
not Life.Die.NonviolentDeath. Also, the
fine-grained types of entities can indicate the fine-
grained types, e.g., Conflict.Attack should
be Conflict.Attack.Bombing when the instru-
ment is WEA.Bomb.

For Russian and Ukrainian events, the main
problem is the difficulty of keyword matching
due to the morphology. As a result, we generate
multiple-level translations using Google Transla-
tion 4, i.e., the translation of the trigger translation,
the translation of the sub-sentence containing the
trigger, the translation of sentence. Then we apply
the English system on these translations.

2.7 Event Coreference Resolution

We apply a graph-based algorithm (Al-Badrashiny
et al., 2017; Zhang et al., 2018) for our language-
independent Event coreference resolution. For
each event type, we view event mentions as nodes
in the graph, and the undirected weighted edges
between the nodes represent the coreference con-
fidence between corresponding events. Then we
apply hierarchical clustering to obtain event clus-
ters. We train a Maximum Entropy binary clas-
sifier with the features listed in Table 4. We use

4https://translate.google.com/

the English annotations from ERE (Getman et al.,
2018) as training data.

2.8 Refinement with Human Hypotheses

A human hypothesis is a small manual knowledge
graph, and we use it to refine the knowledge base
constructed in TA1.a. There are three kinds of re-
finements, i.e., entity refinement, relation refine-
ment, and event refinement.

The entities in the human hypothesis are linked
to the background KB (LDC2019E43), and we
propagate TA1.a KB by adding new entities if one
entity appears in the hypothesis but not in TA1.a
KB. To extract the mentions of these entities, we
use the name of the entity in background KB and
also its translations in other languages, and con-
ducted string matching after stemming. For the
nominal entities, such as “snipers shooting during
Maidan”, we extract the head word “snipers” for
string matching and use “Maidan” as a constraint
that “Maidan” should appear in the same docu-
ment as the mention “snipers”. Only when the
constraint is satisfied, the mention is extracted. If
the entity in the hypothesis is already extracted in
TA1.a KB, we compare its fine-grained types, and
trust the human hypothesis when there are con-
flicts. Furthermore, we use the human hypothesis
to correct the entity linking results. We use the en-
tity name and its translations to match the entities
in TA1.a KB, and trust the linking results in the
human hypothesis when encountering conflicts.

Relation refinement has two stages. The first

https://translate.google.com/


Features Remarks(EM1: the first event mention, EM2: the second event mention)

type subtype match 1 if the types and subtypes of the event nuggets match
trigger pair exact match 1 if the spellings of triggers in EM1 and EM2 exactly match

Distance between the wordembedding quantized semantic similarity score (0-1) using pre-trained word embedding
token dist how many tokens between triggers of EM1 and EM2 (quantized)

Argument match argument roles that are associated with the same entities
Argument conflict Number of argument roles that are associated with different entities

Table 4: Event Coreference: Features for Maximum Entropy classifier (Zhang et al., 2018)

stage is to rerun the system using the updated en-
tities, which will enrich the relations, especially
the ones related to augmented entities. The sec-
ond stage is based on a second-stage binary clas-
sifier. For each relation in the human hypothesis,
we extract the co-occurrent sentences of two enti-
ties, and the binary classifier determines whether
the sentence indicates a relation. If so, we trust
the relation type in the human hypothesis, and the
sentence serves as the justification.

Similar to relation refinement, event refinement
also has two stages, with the rerunning as the
first stage. In the second stage, we extract the
co-occurrent sentences of event type and argu-
ments and develop rules to decide whether the co-
occurrent sentence indicates the arguments of the
event. The localization of event types in each sen-
tence is based on the triggers extracted in TA1.a
KB. In the co-occurrent sentences of entity type
and two arguments, if one argument is extracted
by the system and the other one does not, we add
the missing one to the system output.

3 TA1 Visual Knowledge Extraction

We first briefly review our previous Visual Knowl-
edge Extraction (VKE) system (Zhang et al.,
2018), and then describe the new extensions and
improvements that form our new system. We had
designed the VKE system to complement the text
KE system, by extracting entities solely by their
visual appearance, and then integrating them with
the knowledge extracted from text, to form a uni-
fied knowledge base. The VKE system consists
of entity detection, entity recognition and entity
coreference resolution, that are discussed in the
rest of this section.

3.1 Entity Detection

The entity detection system consists of an ensem-
ble of 5 object detectors, namely 3 Faster R-CNN
(Ren et al., 2015) models trained on 3 different
datasets, a weakly supervised CAM model (Zhou

et al., 2016) for classes for which bounding box
annotation is not available, and an MTCNN model
(Zhang et al., 2016) specialized for face detec-
tion. Since these models are trained on various
datasets with distinct but somewhat overlapping
ontologies, we develop a post-processing algo-
rithm (Zhang et al., 2018) to combine their results
and map to the unified AIDA ontology. Since TAC
2018, the program ontology has changed, and so
we update our class mapping, as well as the CAM
model to cover more classes.

The entity detection system is trained using a
typical cross-entropy loss to classify each object
into a variety of types that are selected from mul-
tiple ontologies. Among these are classes which
follow a hierarchy. This causes a serious issue
in producing a score for a given bounding box;
fine-grained entity types are in conflict with their
coarse-grained counterparts resulting in artificially
lower scores in several cases. For e.g. score for a
bounding box containing a “man” gets distributed
across “man”, “person”, “boy”, “people”. To alle-
viate this issue, we remove the cross-entropy re-
sponsible for generating probability distribution
across classes with a binary cross-entropy which
allows for independent distributions and hence the
scores for each of the entity types are independent
and would get a higher score as required by the
query type similar to (Akiba et al., 2018).

3.2 Entity Recognition

The entity recognition (a.k.a. entity linking) mod-
ule was previously based on a face recognition
pipeline that can recognize a predefined set of PER
(person) entities and link their face bounding box
(visual equivalent of entity mention) to their KB
entry. This year we expanded that system to in-
clude other entity types such as GPE (geopolitical
entity) and FAC (facility). Our face recognition
system (Zhang et al., 2018) is based on FaceNet
(Schroff et al., 2015) which trains a metric space,
which enables comparing the visual similarity of



Figure 2: Example landmark recognition results. Red circles denote local features that were matched to a reference
image.

Figure 3: Example flag recognition results. Green represents correct prediction, blue represents wrong prediction,
and grey represents missed detection by Faster R-CNN.

faces and determining whether a pair of faces be-
long to the same identity. We use a similar strategy
to train other specialized models for other types of
entity, besides PER (person).

For instance, for GPE (geopolitical entity), we
use Google image search to collect flag images
from different countries and organizations (200
classes, 100 images each). We apply our entity
detection system to localize flags in those images,

and tightly crop the flags to train a classifier. We
train an Inception-v4 model (Szegedy et al., 2017)
with 200 classes. In the test time, after entity de-
tection we apply the classification model on the
cropped region of each detected flag to classify
the country and link to the KB. To evaluate, we
manually labeled 69 cropped flags from a random
portion of last year’s evaluation data. Our model
achieves 73% F1 score and 72% accuracy. Exam-



ple results are shown in Figure 3.
To recognize FAC (facility), LOC (location),

and ORG (organization), we adopt the recently
proposed DEep Local Feature (DELF (Noh et al.,
2017)) method, which is used for large-scale
instance-level image matching. The model is pre-
trained on the Google Landmarks (kag) dataset
which includes 15,000 landmarks across the
world. We used the AIDA training data to select
500 scenario-relevant landmarks and buildings.
More specifically, we collected entities that are an-
notated with one of the aforementioned types in
the training data, or detected by the text entity ex-
traction (Section 2.2). Then, we use each retrieved
entity mention to find related images using Google
image search. We use Faster-RCNN on the re-
trieved images to detect landmark instances and
remove images without any landmark. Then we
select entities that have sufficient images (100 per
entity).

We use those images as prototypes for each
entity, and given a test image, we use RAN-
dom SAmple Concensus (RANSAC) (Fischler
and Bolles, 1981) to align its DELF local features
with each prototype. We assign the test image to
the best matching entity, i.e. the prototype with the
most aligned local features. This system achieves
an F1 score of 0.875 on a random portion of last
year’s evaluation data. Example results are illus-
trated in Figure 2.

3.3 Cross-Modal Entity Coreference

The entity coreference system is used to create a
coherent knowledge graph from individually de-
tected entities. As described in (Zhang et al.,
2018), the entity coreference has two submodules:
intra-modal and cross-modal. The intra-modal
coreference module connects visually similar or
related entities such as a person’s face that appears
in multiple images. The cross-modal coreference
module links entities mentioned in text to entities
appeared in images and video keyframes. This
year, we significantly improved our cross-modal
coreference module by incorporating a multi-layer
attention mechanism, as described in the follow-
ing.

We advanced our previous visual grounding
system (Zhang et al., 2018) by introducing a novel
multi-level attention mechanism. As illustrated in
Figure 4, our system extracts a multi-level visual
feature map for each image in a document, that is

a set of grids of feature vectors, where each grid
has a certain granularity, and each cell of a grid is
a feature vector representing an image region. On
the other hand, our network takes each sentence
of the document and represents each word using a
language model. Then for each word (or phrase,
entity mention, etc.) we compute an attention map
to every level and every location of the feature
map. This way, we can choose the level that most
strongly matches the semantic query, and within
that level, the attention map can be used to local-
ize the query. The multi-level aspect of attention is
important, because some queries may convey low-
level information such as object types (e.g. per-
son) while other queries may refer to high-level
semantics such as protest. Higher-level semantics
tend to be reflected in the latter layers of convo-
lution nets, which means the selection of an ap-
propriate layer for query localization is important.
Our cross-modal coreference system outperforms
the state of the art in various visual grounding
benchmarks. More details are discussed in (Ak-
bari et al., 2019).

Furthermore, this year we added a complemen-
tary visual grounding method to our pipeline, to
boost recall. Given bounding boxes and their pre-
dicted classes using the above approach we are
able to perform grounding by matching the text
with those of the predicted classes. We use a
GloVe (Pennington et al., 2014) with thresholds
set to 0.75 to obtain the relevant bounding boxes.

4 TA2

The goal of the TA2 clustering work is to identify
entities and events across documents. The primary
challenge is that the entities and events extracted
by the TA1 modules contain few attributes. For
entities, name and type are always present. About
20% of the entities contain a link to an external
knowledge base (Freebase), and some entities also
contain subtypes (e.g., politician). A secondary
challenge is that the names are present in three
languages (English, Russian and Ukranian), and
extractions are noisy.

To address the sparsity of information, our ap-
proach is to enrich the information present in each
entity using information from an external knowl-
edge graph. For this purpose we use Wikidata as it
contains a large number of entities, including en-
tities that do not satisfy the notability criteria in
Wikipedia. Wikipedia contains over 60 million en-



Figure 4: An overview of our cross-modal coreference (visual grounding) system.

tities, compared to the roughly 5 million entities
present in the English Wikipedia. A secondary
benefit of Wikidata is that it is a multi-lingual
knowledge graph, containing labels and aliases for
all entities in multiple languages, including Rus-
sian and Ukranian.

Our entity enrichment approach leverages the
links to the external knowledge graph. Wikidata
entities contain Freebase identifiers, so our algo-
rithm first maps the Freebase identifiers to Wiki-
data indentifiers to link TA1 entities to Wikidata
entities. Then the algorithm forms entity clusters
by collecting into a cluster all entities that link to
the same Wikidata entity. This initial set of clus-
ters contain only those TA1 entities for which an
external link is present.

The second step of the algorithm the enriched
set of entity labels to add to clusters entities whose
labels match a label for an entity already present
in the cluster. To compare labels we use Jaccard
similarity with a 0.4 threshold. Our experiments
revealed that a high threshold produces good re-
sults as it reduces false positives. The expectation
is that after label enrichment the likelihood of a
close match is increased. When a TA1 entity can-
not be added to an existing cluster, it forms a new
cluster.

5 HypoGator: Alternative Hypotheses
Generation and Ranking

HypoGator is the University of Florida hypoth-
esis Generation system. It uses a search-score-
rank approach to find alternative answers to com-
plex queries over the automatically extracted TA2

knowledge graph. In a nutshell, HypoGator de-
composes a complex graph query into subqueries
of simple subgraph patterns. For each subquery its
entry points are matched into the TA2 knowledge
graph and their local context generates candidate
answers. Candidates are scored and ranked using
multiple features that are indicative of coherence
and relevance. A join algorithm combines the an-
swers from each atomic sub-query and re-scores
the final set of answers using features that encour-
age answer cohesion. Figure 5 shows the archi-
tecture of the proposed system. In this section we
describe the core components of HypoGator.

5.1 Query Processing

A statement of information need is a subgraph pat-
tern with event/relation types and entities as nodes,
event/relation argument roles as edges and a set
of grounded entities known as entry points. We
classify an information need as simple if each en-
try points is used as the argument of only one
event/relation. In contrast, a complex information
need has entry points that are shared by multiple
events/relations developing into a star-like struc-
ture. HypoGator’s query processing module first
scan an information need and decomposes a com-
plex information needs into multiple simple in-
formation needs that we refer to as atomic. The
decomposition algorithm first finds all connected
components in the information need and for each
component, the algorithm visits the neighbors of
its entry points and traverse each of them until a
different entry point or a terminal node is found.
The resulting subgraphs are added to the atomic
query list. Figure 6 shows the statement of infor-



Figure 5: HypoGator System Architecture

mation need E102 with entry points Odessa (a.k.a.
Odesa) and Trade Unions House (a.k.a. Trade
Unions Building) in the center and atomic queries
derived from it using the decomposition algorithm
round it.

After query decomposition, HypoGator
matches entry points into the TA2 knowledge
graph. At first, HypoGator matches entry points
with background KB ids directly to the corre-
sponding entity mention id in the TA2 KG. If
the background KB id can not be matched or the
query doesn’t have one, HypoGator uses the entry
point name string to match TA2 entity mention
nodes using common string similarity metrics.
Finally, entry points are attempted to be matched
using the provenance offset.

5.2 Candidate Hypothesis Generation

To generate relevant hypothesis for an atomic
query HypoGator explores the neighborhood of
the entry point mention in the knowledge graph
using the A* algorithm. Te results is a set of paths
up to a fixed length that serve as backbone struc-
ture for candidate hypothesis. While the result-
ing paths are rooted at entity nodes, the gener-
ated paths visit event and relation nodes, to gener-
ate full candidate hypothesis HypoGator expands
a path by adding all arguments of the visited event
and relations in the path.

5.3 Coherence Feature Extraction

Our candidate generation module ensures that the
generated candidate hypothesis include the entry
points. However, this does not guarantee them to
be fully relevant to the query at hand. Moreover,

the candidates need to be pruned if they are not
logically or semantically coherent. Another im-
portant factor determining the quality of a candi-
date hypothesis is the validity confidence of each
of its knowledge elements, whether they are from
the document sources (extraction confidence) or
inferred (inference confidence) or TA2 clustering.

We use a variety of features to measure each hy-
pothesis’s semantic coherence, logical coherence,
and degree of relevance to the query. We use
an aggregation method to obtain an overall con-
fidence score from each knowledge elements con-
fidence. For example we use an ensemble of graph
distance functions to measure the query relevance
or use a set of predefined logical rules to detect
logical inconsistency. The overall score for each
hypothesis is computed as a linear combination
of the individual scores from each of the features.
We use the LDC labeled data to learn appropriate
weights for each feature or use reasonable hand-
crafted weights for each feature.

5.4 Ranking and Selection

While we have multiple features and each of them
scores the hypothesis for some important consis-
tency or coherence property, we need a condense
score that can be used to give full quantitative sig-
nificance to a hypothesis and therefore use it for
ranking candidates. We use a simple approach to
aggregate different scores, a weighted sum of the
feature values. We manually select the weights
with what we believe are more salient features of a
hypothesis. We look forward to include a learned
version of the weights.



Figure 6: Query Decomposition E102

5.5 Hypotheses Clustering

Due to the nature of AIDAs data e.g. multiple doc-
uments about the same hypothesis, it is possible
to have multiple subgraphs representing the same
hypothesis. Our system uses subgraph clustering
to prune duplicate hypothesis. Our focus on the
hypothesis and having a smaller data size com-
pared to what TA2 has to work with, enables us
to perform more expensive subgraph level cluster-
ing. We compute a similarity score for each pair
of generated subgraph hypothesis. Entity features,
TA2s alignments and the graph structure, are used
to compute this score. We finally use spectral clus-
tering to cluster the set of hypothesis into K clus-
ters.

5.6 Hypotheses Composition

After all candidate hypothesis are scored, dedupli-
cated and ranked for each atomic part, we use a
join algorithm to combine atomic hypothesis. The
algorithm generates all possible combinations of
candidate atomic answers. We set the value of K
in the clustering step such that the cross product
of atomic hypothesis is feasible. Every resulting
combinations is deemed as a full hypothesis. Full
hypothesis are re scored using the same same set
of features, in addition a new score is given based
on how far each connected component is with re-
spect to others in the same hypothesis. The top re-

sulting hypotheses are selected as final candidates
and further deduplicated by clustering. The repre-
sentatives of each cluster are returned as final hy-
potheses.

5.7 Hypothesis Enrichment

Based on development observation, we found that
the hypothesis generated by HypoGator matched
totally or partially the core elements found in the
statement of information need, but lack a mecha-
nism to add context to the answer. E.g. an infor-
mation need may ask about the dead of a politi-
cian, and hypo gator may be able to find the cor-
rect life.die event but it would not contain contex-
tual information such as who did the killer work
for, or the details of the weapon used in the as-
sault. Therefore, we increase the size of the hy-
pothesis by including entity neighbors from the
background knowledge base. Since the random
addition of neighbors may induce noise into the
hypothesis, we only add context to certain entities
of interest e.g., the entities of type PER. the en-
richment method also allows to select what kind
of contextual relations we are relevant e.g., the re-
lations of type AFFILIATION, RESPONSIBILITY,
DELIBERATENESS, etc. Context expansion, in-
creases the reach of our hypotheses while main-
taining the core set of matched elements intact.



6 Hypothesis Generation at ISI

TA2 generates a full Knowledge Graph (KG).
Given such a KG and a file containing the State-
ments of Information Need (SIN) that identifies a
topic in the KG, the steps required to generate the
top K hypotheses in TA3 are as follows.

Retrieve the knowledge elements relevant to
the Entry Points. We convert an XML file con-
taining the SIN to SPARQL and perform a query
on the full KG generated by TA2.

Convert the full KG to data in an internal
format. The data in this internal format only con-
tains information about the knowledge elements
that are within a user-specified number of hops
from the Entry Points and that will be used for rea-
soning, such as the arguments of Events and Rela-
tions. Each of these arguments has a confidence
value.

Generate ontological constraints. Based on
the LDCOntology, we generate two types of on-
tological constraints: (a) domain constraints, and
(b) cardinality constraints. For each type of Event
or Relation, each argument can accept only spe-
cific types of objects. Such constraints qualify
as domain constraints. At a practical level, suf-
ficient reasoning done by TA1 and TA2 already
minimizes the number of domain constraints to be
added by TA3. The cardinality constraints, often
implemented as mutual exclusion constraints, can
be added for two different reasons. First, for some
types of Events or Relations, some of their argu-
ments can only have a limited number of distinct
objects. For example, given an Event Life.Born,
the argument Life.Born Time can have only one
object. Second, each Entity can serve the same
role only in a limited number of Events or Rela-
tions. For example, each Person Entity can serve
the argument Person in only one Life.Born Event.

Represent the new data as weighted con-
straints. In our approach, assertions in the KG
are not automatically deemed to be true in a hy-
pothesis. This is because they have certain confi-
dence values associated with them that have to be
reasoned about jointly with the ontological con-
straints. Instead, a hypothesis fixes the truth value
of each assertion, i.e., it is a subset of the full
KG. We therefore treat each assertion as a Boolean
variable with domain {0, 1}. Here, ‘0’ and ‘1’ rep-
resent ‘False’ and ‘True’, respectively. For each
Boolean variable v corresponding to an assertion
with confidence value p, we add a unary weighted

constraint with weights− log(1−p) and− log(p)
against the assignments v = 0 and v = 1, re-
spectively. For each mutual exclusion constraint
c between two variables v1 and v2, we add a bi-
nary weighted constraint with weights− log(p/2),
− log(1 − p/2), − log(1 − p/2) and − log(p/2)
against the assignments (v1 = 0, v2 = 0), (v1 =
0, v2 = 1), (v1 = 1, v2 = 0), and (v1 = 1, v2 =
1), respectively.

Solve an instance of the Weighted Constraint
Satisfaction Problem (WCSP) defined on the
weighted constraints. We use the Toulbar2 solver
to solve the WCSP instance. This solver finds an
optimal assignment of values to all Boolean vari-
ables that minimizes the total weight. This opti-
mal assignment is the top hypothesis base of the
original problem. To generate the kth hypothesis
base, for 1 ≤ k ≤ K, we construct a new WCSP
instance that includes all the weighted constraints
described above as well as additional constraints
that disallow the previously generated k − 1 hy-
pothesis bases. Each hypothesis base is consistent
with the ontological constraints.

Filter edges relevant to the SIN and construct
hypotheses. We generate the kth final hypoth-
esis from the kth hypothesis base by retaining
only those edges that are relevant to the SIN. This
relevance filtering mimics the popular Word2Vec
model in Natural Language Processing. For each
Event or Relation, we calculate similarity scores
between its type and the Event types specified in
the SIN. We then retain only the M Events and
Relations with the highest similarity scores.

Score the hypotheses. The total score of a hy-
pothesis is the average of its relevance score and
its consistency score. In turn, the relevance score
of a hypothesis is the average similarity score over
all Events and Relations in it, as derived from the
Word2Vec model in the previous step. The con-
sistency score of a hypothesis is e−w, where w is
the total weight of the optimal assignment to the
WCSP instance that defines its base. This score
uses the transformation rule that defines weighted
constraints from confidence values.
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